ARL-TN-0913 e SEP 2018

ARL

US Army Research Laboratory

AppPottsRS: A Read-Shockley Class for
SPPARKS

by Efrain Hernandez-Rivera




NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-

ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



ARL-TN-0913 e SEP 2018

ARL

US Army Research Laboratory

AppPottsRS: A Read-Shockley Class for
SPPARKS

by Efrain Hernandez-Rivera
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.



Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
September 2018

2. REPORT TYPE
Technical Note

3. DATES COVERED (From - To)
January 2017-January 2018

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

AppPottsRS: A Read—Shockley Class for SPPARKS

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Efrain Hernandez—Rivera

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Research Laboratory

ATTN: RDRL-WMM-B

Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION REPORT
NUMBER

ARL-TN-0913

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
primary author’s email: <efrain.hernandez18.civ@mail.mil>.

14. ABSTRACT

The Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) framework has enabled large-scale simulation of
microstructural evolution as simulated by the Potts Monte Carlo model. In order to more accurately model microstructural
evolution, the AppPottsRS code was developed as an extension to the SPPARKS’ Potts model (AppPotts). The AppPottsRS
class uses a more robust microstructural description based on Euler—Bunge angles and relies on the Read—Shockley equation to
characterize interfacial energies. This technical note briefly describes the AppPottsRS class, which is used to model grain
growth under the SPPARKS framework. This includes a detailed description of an example input file used to simulate grain
growth of a hexagonal material. Based on ongoing efforts, the code was adapted to couple texture interactions to magnetic
fields. A short example is provided where magnetic-field-enhanced grain growth is shown. Lastly, the C++ source code is
included as an appendix.

15. SUBJECT TERMS
Potts Monte Carlo, Read—Shockley, C++, grain growth, magnetic field

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
’ ’ OF OF Efrain Hernandez—Rivera
ABSTRACT PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uu 36 410-306-4961

i

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 7Z39.18



Contents

List of Figures

Acknowledgments

1. Introduction

2. Algorithm Implementation

3. Summary

4. References

Appendix A. AppPottsRS Class Source File
Appendix B. AppPottsRS Class Header File
List of Symbols, Abbreviations, and Acronyms

Distribution List

Approved for public release; distribution is unlimited.

1l

iv

24

28

29



List of Figures

Fig. 1 Example input file used to run AppPottsRS, which generates a hexagonal
symmetry (material) meshless 128 x 128 x 128 domain and runs for 2600

MCS (tcomp = 100)...iiniiiiii 3
Fig. 2 Normalized distributions of the Euler angles for a randomly textured
MALETIALL .. .t 4

Fig. 3 Representative simulated microstructural evolution showing low-energy
voxels (i.e., 1SOlating rainsS) ........o.euinirreniniiteniiiteeneeeeieeeeeeeaaenen 5

Fig. 4 Grain growth curve for different field strengths............................. 6

Approved for public release; distribution is unlimited.

v



Acknowledgments

The author would like to thank Drs Philip Goins (Oak Ridge Associated Universi-
ties/US Army Research Laboratory) and Jeff Allen (US Army Engineer Research
and Development Center) for useful discussions in the development of the code

presented here and/or previous versions.

Approved for public release; distribution is unlimited.



1. Introduction

Understanding how microstructures evolve is essential for designing better per-
forming materials, as these are known to influence material properties. Multiple
computational codes have been developed to model how materials evolve, to in-
clude Sandia National Laboratories’ Stochastic Parallel PARticle Kinetic Simulator
(SPPARKS) framework.! This framework simulates microstructural evolution us-
ing the well-known Potts Monte Carlo (PMC) model.> While a highly efficient and
scalable algorithm, SPPARKS’ PMC model implements an isotropic interfacial en-
ergy Hamiltonian. This simplified implementation has been successfully used to
model a wide range of processing conditions (e.g., welding).? Nonetheless, a more
robust implementation that enables texture-specific interfacial energies would en-
able higher-fidelity simulations. This is routinely done by defining grain boundary
misorientation angles and using the Read—Shockley equation to determine the grain
boundary energies.*”’ A Read-Shockley-based PMC algorithm was developed to
model microstructural evolution under the SPPARKS framework, termed the App-
PottsRS.

This technical note documents how the Read—Shockley PMC algorithm was imple-
mented into SPPARKS. A short description of a sample input file that simulates
evolution of a hexagonal material is provided for clarity. The code was extended to
include how material textures “couple” to external fields (e.g., magnetic fields), and
a brief example is provided. The source C++ code is included as an appendix. Note
that the AppPottsRS class has been developed to run under the SPPARKS frame-
work (i.e., it must be compiled under SPPARKS). Lastly, it should be noted that a
separate technical report® documents AppPottsRS’ validation and usage to model

microstructural evolution under thermal gradients.

2. Algorithm Implementation

As previously mentioned, this code was written to run as a derived-class under
the SPPARKS framework. In fact, it was built similar to the AppPottsNeighOnly
class and is a child class to AppPotts. Therefore, AppPottsRS must be included into
SPPARKS’ source directory and compiled using the appropriate makefile, as it
relies on the framework to build the computational domain, define global variables,
and handle the communication. While the Read—Shockley PMC model has been
extensively studied, to the best of the author’s knowledge, this is the first publicly

Approved for public release; distribution is unlimited.



available implementation into SPPARKS. Following is a brief description of the

input file, shown in Fig. 1.

As this class was derived from AppPotts (standard PMC), there are several similar-
ities between the input file shown here and the one in SPPARKS’ standard distribu-

tion. For simplicity, the following list describes the lines of interest as numbered in
Fig. 1.

13:

15:

16:

17:

18-19:

24

26-28:

31-32:

36:

39-40:

42:

45:

48:

51-54:

56:

seed value for random number generator

: logfile name for saving generic run information

call to class (potts/rs), assigning number of possible orientations (one per

voxel), and define material symmetry (hexagonal)
computational domain dimension

define lattice connectivity/neighborhood and grid spacing
define rectangular domain size

create domain

assign a unique grain orientation flag per voxel

assign uniformly random distribution for Euler angles, which are redistributed

to generate a random texture, yielding the distributions as shown in Fig. 2.
flags for sampling sites

cutoff angle for Read—Shockley equation

mobility parameters, as defined by Humphreys’

scaling coefficient for the Potts’ Hamiltonian

call to diagnostic calculation, which outputs global energy to logfile
define computational temperature (kg71")

output specific commands

computational run time

Approved for public release; distribution is unlimited.



OO JoUlbdWN

Fig. 1 Example input file used to run AppPottsRS, which generates a hexagonal symmetry
(material) meshless 128 x 128 x 128 domain and runs for 2600 MCS (tcomp = 100)

Approved for public release; distribution is unlimited.



0.0025

0.0020

0.0015

Frequency
Frequency

0.0010

0.0005

0.0000
50 100 150 200 o 50 100 150 200 250 300

$1 (deg) ¢> (deg)

Frequency

@ (deg)

Fig. 2 Normalized distributions of the Euler angles for a randomly textured material

Figure 3 shows a representative grain growth process of a 128 x 128 x 128 domain
that was executed for run = #.,m, = 100. The microstructures have been thresh-
olded in such a way that only voxel with low energies are shown (i.e., filtering
out grain boundaries). Since each voxel has a unique orientation at the beginning
of the simulation, this simulation could be thought of as solidification of a mate-
rial. At early times, many small grains are growing giving the appearance of small
precipitate-like clusters. Towards the end of the simulation, clearly distinguished
grains can be identified. For a complete description of grain growth simulations us-
ing AppPottsRS, the reader is directed to the technical report by Herndndez—Rivera

et al.®

Approved for public release; distribution is unlimited.



261 MCS

N 2 % { }‘

Fig. 3 Representative simulated microstructural evolution showing low-energy voxels (i.e.,
isolating grains)

Approved for public release; distribution is unlimited.



Another example application of this code is modeling under different processing
conditions (e.g., grain growth under magnetic fields). Similar to the work by Lei et
al.,!0 the texture description of the microstructure was coupled to the direction of
an applied magnetic field. Figure 4 shows the grain growth curves for the case of a
slightly positive (+H), negative (—H), and zero (H = 0) applied magnetic fields
aligned the material’s normal direction. While Lei reports that magnetic fields have
no influence on the grain growth kinetics, Fig. 4 shows that the magnetic field will
increase the kinetics. This is in agreement with Goins et al.'! The Lei findings that
kinetics are uninfluenced by magnetic fields are likely due to the limited run time
where kinetics appear similar (i.e., t,, < 250 MCS).

1200{ ® *H
—H
L ]
e 0
% 1000 - e
=
- L ]
< 800 - .
]
L ]
’& o)
600
)
o s
©
o]
2 400
< ]
o
o®
200 '.'
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Time (MCS)

Fig. 4 Grain growth curve for different field strengths

3. Summary

A more accurate description of grain boundaries for microstructural modeling can
be obtained through use of the Read—Shockley equation. This technical note out-
lines the development of AppPottsRS, which incorporates the Read—Shockley equa-
tion into the PMC model currently available in SPPARKS. A representative mi-
crostructure is shown and briefly described. The use of a more robust texture-based
description enables coupling to magnetic fields, which are shown to accelerate the

growth kinetics. Finally, the source code is provided as an appendix.

Approved for public release; distribution is unlimited.



4.

References

Sandia National Laboratories. SPPARKS documentation. [accessed 2018 Jul
26]. http://spparks.sandia.gov/.

Potts RB. Some generalized order-disorder transformations. Math Proc Cam-
bridge Phil Soc. 1952;48:106—-109.

Sandia National Laboratories. ~SPPARKS documentation: app_style
potts_weld.  [accessed 2018 Jul 26]. https://spparks.sandia.gov/doc/app_p
otts_weld.html.

Anderson M, Srolovitz D, Grest G, Sahni P. Computer simulation of grain
growth-1. Kinetics. Acta Metallurgica. 1984;32(5):783-791.

. Srolovitz D, Anderson MP, Sahni PS, Grest GS. Computer simulation of grain

growth-II. Grain size distribution, topology, and local dynamics. Acta Metallur-
gica. 1984;32(5):793-802.

Grest G, Srolovitz D, Anderson M. Computer simulation of grain growth-IV.

Anisotropic grain boundary energies. Acta Metallurgica. 1985;33(3):509-520.

Holm EA, Hassold GN, Miodownik MA. On misorientation distribution evolu-
tion during anisotropic grain growth. Acta Materialia. 2001;49(15):2981-2991.

. Hernandez-Rivera E, Goins PE, Murdoch HA. Anisotropic grain growth mod-

eling under the SPPARKS framework. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2018 Sep. Report No.: ARL-TR-8507.

Humphreys F. A unified theory of recovery, recrystallization and grain growth,
based on the stability and growth of cellular microstructures—I. The basic model.
Acta Materialia. 1997;45(10):4231-4240.

10. Lei H, Zhu X, Sun Y, Hu L, Song W. Effects of magnetic field on grain

growth of non-ferromagnetic metals: A Monte Carlo simulation. Europhys Lett.
2009;85(3):38004.

11. Goins PE, Murdoch HA, Hernandez-Rivera E, Tschopp MA. Effect of mag-

netic fields on microstructure evolution. Comp Mat Sci. 2018;150:464—474.

Approved for public release; distribution is unlimited.



Appendix A. AppPottsRS Class Source File

Approved for public release; distribution is unlimited.



AppPottsRS class source — a SPPARKS Read—-Shockley
implementation

Developed by Efrain Hernandez-Rivera (2017--2018)

US Army Research Laboratory

THIS SOFTWARE IS MADE AVAILABLE ON AN "AS IS" BASIS

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, NEITHER

EXPRESSED OR IMPLTIED

——————————————————————————————————————————————————————— */
#include "stdio.h"

#include "string.h"

#include "stdlib.h"

#include "domain.h"

#include "math.h"

#include "app_potts_rs.h"

#include "random_park.h"

#include "comm_lattice.h"

#include "error.h"

using namespace SPPARKS_NS;

#define MY_PI 3.14159265358979323846 // pi

#define MY_2PI 6.28318530717958647692 // 2pi

J ok %/

AppPottsRS: :AppPottsRS (SPPARKS *spk, int narg, char =x=xarg)

AppPotts (spk,narg, arqg)

{

ninteger = 1;
//1 double array per Euler angle
ndouble = 3;

Approved for public release; distribution is unlimited.



// add the extra arrays

recreate_arrays () ;

// only error check for this class, not derived classes
if (strcmp(arg[0],"potts/rs") == 0 && narg < 2)
error—>all (FLERR, "Illegal, app_style ,command");

//cutoff misorientation angle
thetam=15.0/180.0+«MY_PI;

//interaction (interfacial) energy

Jij=1.0;

//Mobility parameters
nmob=4.0; bmob=5.0;

//Symmetry operator
Osym=24;
if (narg == 3)

Osym=atoi (arg[2]);

AppPottsRS: :~AppPottsRS ()
{

//free up memory from quaternion symmetry operator
for (int 1 = 0; i<Osym; 1i++)

delete[] symquat[i];

delete[] symquat;

Approved for public release; distribution is unlimited.

10



Initialize before each run

check wvalidity of site wvalues

void AppPottsRS::init_app ()

{

delete [] sites;

delete [] unique;

sites = new int[l + maxneigh];
unique = new int [l + maxneigh];
dt_sweep = 1.0/maxneigh;

int flag 0;
//Check angles are within corresponding range
//originally should be set to phi=U(0,1)
for (int 1 = 0; i < nlocal; i++) {
//Randonly distribute Euler angles
phil [1]1=MY_2PIxphil[i]; Phi[il=acos (2xPhi[i]-1);
phi2 [1]=MY_2PIxphi2[i];

if (phil[i] < 0 || phil[i] >= MY_2PI) flag = 1;
if (phi2[i] < 0 || phi2[i] >= MY_2PI) flag = 1;
if (Phi[i] < 0 || Phi[i] >= MY_PI) flag = 1;

//Initialize symmetry operator as quaternion vectors
//Osym = 24 (cubic), 12 (hexagonal)
symmat (&symquat) ;

comm—>all () ;

int spi, spn, nei;
double qgif[4], gjl4];

for (int 1=0; i<nlocal+nghost; i++) {

Approved for public release; distribution is unlimited.

11



spi=spinl[i];

euler2quat (i, qgi);
for (int n=0; n<numneigh[i]; n++) {
nei=neighbor[i] [n];

spn=spin[neil];

//order by min/max to avoid duplicate pairs

int smin MIN (spi, spn) ;

int smax MAX (spi, spn) ;

std::pair <int, int> spins = std::make_pair(smin, smax);

if (spi !'= spn && misos.count (spins) == 0) {

euler2quat (nei, gj);

//insert misorientation angle
//between spin ID pair (thetar)

misos[spins]=quaternions (gi,g]j)/thetam;

if (logfile)
fprintf (logfile," , Pairs_misorientation_map_created\n");

if (screen && me==0)

fprintf (screen, " , Pairs _misorientation map, created\n");

int flagall;
MPI_Allreduce(&flag, &flagall,1l,MPI_INT,MPI_SUM,world);
if (flagall)

error—>all (FLERR, "One_or _more_sites_have_invalid_values");

Approved for public release; distribution is unlimited.

12



Set site value ptrs each time iarray/darray are

reallocated

void AppPottsRS::grow_app ()
{
// set pointers
// to define these, use command
// create_sites box iN and set iN

iarray[0];

spin
phil
Phi

phi?2

14

]
1
]

darray [0
1

darray |

14

darray|[2

[k

User defined optional parameters

void AppPottsRS::input_app (char *command, int narg, char *xarqg)
{
if (narg < 1) {
error—->all (FLERR, "Invalid_command_for_app_style");

//Redefine mobility parameters (n,Db)
if (strcmp (command, "mobility") == 0) {
if (narg !'= 2)
error->all (FLERR, "Illegal mobility flag:_requires "
"two_arguments, parameter—-flag and_parameter-value, "

"(e.g._mobility_expo_3.0)\n");

if (strcmp(arg[0], "expo") == 0) {
nmob=atof (arg[1]);

if (logfile)
fprintf (logfile, " , Mobility,_exponent reset_to_%g\n",nmob) ;

Approved for public release; distribution is unlimited.

13



if (screen && me==0)

fprintf (screen," , Mobility exponent reset_to_%$g\n",nmob) ;

}
else if (strcmp(arg[0],"scale") == 0) {
bmob=atof (arg[1]);

if (logfile)

fprintf (logfile, " , Mobility _,scaling_reset_to_%$g\n",bmob);
if (screen && me==0)

fprintf (screen," , Mobility scaling, reset_to_%$g\n",bmob) ;

—

}
else
error->all (FLERR, "Mobility parameter not, recognized\n");
}
//Cutoff angle for Read-Shockley
else if (strcmp (command, "cutoff") == 0) {
if (narg<l)
error->all (FLERR, "Illegal_cutoff angle_command\n");
thetam=fabs (atof (arg[0]))/180.0+MY_PT;
if (thetam>MY_ 2PI)
error—>all (FLERR, "Cutoff_ angle_must_be defined_in "

"terms_of, degrees_ (0,360)\n");

if (logfile)
fprintf (logfile, "  Low-to-high_angle_ cutoff reset "
"to_%s_deg\n",arg[0]);
if (screen && me==0)
fprintf (screen, " ,  Low-to-high angle cutoff reset "
"to,_%s_deg\n",argl[0]);
}
//Potts interfacial energy scaler
else if (strcmp (command, "energy_scaling") == 0) {
if (narg<l)

error->all (FLERR, "Illegal_,scaling_energy_command\n") ;

Approved for public release; distribution is unlimited.

14



Jij=atof (argl0]);
if (Jij<0)
error—->all (FLERR, "Illegal_energy value_ (>0)\n");

if (logfile)
fprintf (logfile, ", PMC_energy,  scaling by %g.\n",Jij);
if (screen && me==0)
fprintf (screen, ", PMC _energy, scaling by, %g.\n",Jij);
}
else

error—->all (FLERR, "Input_,command, not _recognized by_app\n");

double AppPottsRS::site_energy(int i)
{

int nei;

double eng = 0.0, gi[4], gjl4], thetar;

euler2quat (i,qi);

for (int j = 0; j < numneigh[i]; J++) {
nei=neighbor[i] [J];

if (spin[i] == spin[nei]) continue;

int smin = MIN(spin[i],spin[neil]);

int smax MAX (spin[i], spin[neil);

std::pair <int, int> spins = std::make_pair (smin, smax);
// ratio of theta/theta m
if (misos.count (spins) == 1)

thetar=misos[spins];

Approved for public release; distribution is unlimited.

15



else {
euler2quat (nei, gj);
thetar=quaternions (gi, qj)/thetam;

misos[spins]=thetar;

if (thetar >= 1.0 || thetam<le-8)
engt+=1;

else if (thetar > 0.0)
engt+=thetar* (1.0-1log(thetar));

return Jij*eng;

void AppPottsRS::mat2quat (const double O[3][3], double gl[4])
{
double g4 = 0;

if( (1 + O[0][0] + O[1][1] + Of[2]1([2]) > 0) {

(
(

g4 = sqgrt(l + O[0][0] + O[1][1] + O[2]1[2]1)/2;
ql0] = ag4;
qll] = (O[2][1] — O[1]1([2])/ (4xq4);
al2] = (0[0][2] — O[2][0])/ (4xq4);
qgl3] = (O[1]1[0] - O[01[1])/ (4%g4d);
}
else if ( (1 + O[0][0] - O[11[1] - O[2]1[2]) > 0) ¢{
g4 = sqgrt(l + O[0][0] - O[1][1] - O[2]12])/2;
ql0] = (O[2][1] - O[1]([2])/ (4xq4);
all]l = g4;
gl2] = (O[11[0] + O[01[1])/ (4%g4d);
gl3] = (O[0]1[2] + O[2]1[0])/ (4*gd);

Approved for public release; distribution is unlimited.

16



else if ( (1 - O[0][0] + O[1]1[1] - O[2]11[21) > 0) {

q4 = sqrt (1 - O[0][0] + O[1][1] - Of[2]1[2])/2;
gl0] = (O[0]1[2] - O[21[0])/ (4%g4d);
gll] = (O[1]1[0] + O[01[1]1)/ (4%gd);
alz] = q4;
ql3] = (O[2][1] + O[1][2])/(4*q4);
}
else if ( (1 - O[0]1[0] - O[1]1[1] + O[2]11[2]1) > 0) {
g4 = sqgqrt(l - O[0][0] - O[1][1] + O[2][2])/2;
gl0] = (O[1]1[0] - O[01[1]1)/ (4%g4d);
all]l = (O[0][2] + O[2][0])/ (4*qg4);
al2] = (O[2]1[1] + O[1][2])/(4*q4);
al3] = g4;

void AppPottsRS::symmat (double x**xsym)
{
//grow by number of symmetric operators

(*sym) = new doublex[Osym];

//grow for symmetry quaternion vectors
for (int o0=0; o<Osym; o++)

(*sym) [0] = new double[4];

//buffer for guaternion

double gf4];

if (Osym == 24) {
//cubic symmetry
double SYM[24][3][3] =
{ ({1, 0, O}, { O, 1, O}, { O, O, 1}},

Approved for public release; distribution is unlimited.

17



{{ 1, o0, 03}, { O0,-1, O}, { O, O,-1}},
{{ 1, o, 03}, {0, O,-1}, { O, 1, O}},
{¢1, o, 0y, {0, O, 1}, { O,=-1, O}},
{{-1, o, 0}, { 0O, 1, O}y, { O, O,-1}},
{{-1, o, 03}, { O0,-1, O}, { O, O, 1}},
{{-1, o, 03, {0, O,-1}, { O,-1, O}},
{{-1, o, o0y, {0, O, 1}, { O, 1, O}},
{{ 0, 1, 0}, {-1, O, O}, { O, O, 1}},
{{ 60, 1, 03}, {0, O,-1}, {-1, O, O}},
{¢ o0, 1, 0}y, {1, O, O}y, { O, O,-1}},
{{ 0, 1, 0}, {0, O, 1}, { 1, O, O}},
{{ 0,-1, 03y, {1, O, O}, { O, O, 1}},
{{t 0,-1, O}y, { O, O,-1}, { 1, O, O}},
{{ 0,-1, 0}, {-1, O, O}, { O, O,-1}},
{{ 0,-1, 03}, { O, O, 1}, {-1, O, O}},
{{ 6, 0, 13, {0, 1, O}, {-1, O, O}},
{{ 0, 0, 13}, {1, O, O}, { O, 1, O}},
{{ 0, 0, 13}, { O0,-1, O}, { 1, O, O}},
{{ 0, 0, 13}, {-1, O, O}, { O,-1, O}},
{¢" 6, 0,-1%, { O, 1, O}y, {1, O, O}},
{{ 0, 0,-13}, {-1, O, O}, { O, 1, O}},
{{ 0, 0,-13}, { O0,-1, 0O}, {-1, O, O}},
{¢ 6, 0,-1}, {1, O, O}, { O,=1, O}} };

for (int o=0; o<Osym; o++) {
mat2quat (SYM[o],q);
for (int 1=0; i<4; i++)

(xsym) [o] [1]=q[1];

}
else if (Osym == 12) {

double a = sqrt(3)/2;
double SYM[12][3]I[3] =

Approved for public release; distribution is unlimited.

18



{ 1, 0, 0}, A 0, 1, 0}, { 0, 0, 11},
{{-0.5, a, 0y, { -a,-0.5, 0}, { 0, 0, 113,
{{-0.5, -a, 0}, { a,-0.5, 0}, { 0, 0, 113},
{{ 0.5, a, 0y, { -a, 0.5, 0}, { 0, 0, 113},
{{ -1, 0, 0}, { 0, -1, 0}, { 0, 0, 113,
{{ 0.5, -a, 0}, { a, 0.5, 0}, { 0, 0, 1},
{{-0.5, -a, 0y, { -a, 0.5, 0}, { 0, 0, -1}3},
{{ 1, 0, 0}, { 0, -1, 0}, { 0, 0, -1}},
{{-0.5, a, 0}, { a, 0.5, 0}, { 0, 0, -1}},
{{ 0.5, a, 0}, { a,-0.5, 0}, { 0, 0, -1}3},
{{ -1, 0, 0}, { 0, 1, 0}, { 0, 0, -1}},
{{ 0.5, -a, 0y, { -a,-0.5, 0}, { 0, 0, -1}} };

for (int o=0; o<Osym; o++) {
mat2quat (SYM[o], q) ;
for (int i=0; i<4; i++)

(xsym) [o] [1]=qg[1];

double AppPottsRS::quaternions (const double gi[4], const double gj[4])
{

double miso0, misom=MY_ 2PI;

double gl4], gib[4], gjbl4], gmin[4]={0,0,0,0};
for (int 01=0; 01<Osym; ol++) {
for (int 02=0; 02<0Osym; 02++) {
quat_mult (symquat [0ol],gi, gib);
quat_mult (symquat [02],97,9]b);

gjb[1l]=-gjb[l]; gjb[2]=-gjb[2]; gjb[3]=-93b([3];

Approved for public release; distribution is unlimited.

19



quat_mult (gib, gjb,q);

miso0 = 2+acos(qgl[0]);

if (miso0 > MY_PI)
miso0 = misoO0O-MY_ 2PTI;

if (fabs(miso0O) < misom) {
misom=fabs (miso0) ;

agmin[0]=g[0]; gmin[1l]=qg[l]; amin([2]=q[2]; gmin[3]=g[3];

misoO0=2xacos (qmin[0]);
if (misoO0 > MY _PI)
misoO=miso0-MY_2PI;

return fabs (miso0);

void AppPottsRS::quat_mult (const double gi[4], const double gj[4],
double g[4])

//Hamilton multiplication/product

//multiplying quaternions and update

al0] = gi[0]xqJ[0] - qilllxqj[1l] - qgil2]xqJ[2] - qi[3]*q][3];
qlll = qi[0]xqj[1l] + gi[l]*qJj[0] + qi[2]xqJ([3] - qil[3]xqjl[2];
al2] = qi[0]*gj[2] - gil[l]xqgJ[3] + ql[2]* JI0] + gi[3]*gj[1];
al3] = gqi[01xqJ[3] + qilllxqjl2] - qgil2]xqJ[1l] + qi[3]1*q][0];

void AppPottsRS::euler2quat (int i, double gl4])
{

//Convert grain Euler angles to quaternion vector
double pl=phil[i], P=Phi[i], p2=phi2[i];

Approved for public release; distribution is unlimited.

20



ql0]l=cos (P/2.
gqll]=sin(P/2.
ql2]=sin(P/2.
ql[3]=cos(P/2.

xcos ((pl+p2)/2.)
xcos ((pl-p2)/2.)
)
)

~e

*sin ((pl-p2)/2.

~e

~ ~— @~ ~

xsin ((pl+p2) /2.

rKMC method

perform a site event with no null bin rejection

flip to random neighbor spin without null bin
——————————————————————————————————————————————————————— x/
void AppPottsRS::site_event_rejection(int i, RandomPark xrandom)
{

int oldstate=spin[i];

double iphi[3]={phil[i],Phi[i],phi2[i]};

// events = spin flips to neighboring site different than self

int Jj,nei;

int nevent = 0;

//Nearest—-neighbor sampling

for (j = 0; j < numneigh[i]; Jj++) {
nei=neighbor[i] [J];
if (spin[i]==spin[neil)

continue;

sites[nevent++]=nei;

if (nevent == 0) return;
int iran = (int) (neventxrandom->uniform());
if (iran >= nevent) iran = nevent-1;

Approved for public release; distribution is unlimited.

21



double einitial = site_energy (i), gold[4];

euler2quat (i, gold);

spin[i] = spin[sites[iran]];
phil[i] = phil[sites[iran]];
phi2[i] = phi2[sites[iran]];
Phi[i] = Phi[sites[iran]];

double efinal = site_energy (i), gnewl[4];

//Determing misorientation between ij states to
//calculate mobility

double thetar;

MIN (oldstate, spin[i]);

int smin

int smax = MAX (oldstate,spin(i]);

std::pair <int, int> spins = std::make_pair (smin, smax) ;

// ratio of theta/theta_m

if (misos.count (spins) == 1)
thetar=misos|[spins];

else {
euler2quat (i, gnew) ;
thetar=quaternions (gold, gnew) /thetam;

misos[spins]=thetar;

double p0=(1.0-exp (-bmobx*pow (thetar, nmob))) ;

//Check for isotropic case

if (thetam<le-8) p0=1;

// accept or reject via Boltzmann criterion

if (efinal <= einitial) {

Approved for public release; distribution is unlimited.

22



if ((thetar < 1le-8) || (random->uniform() < p0)) {

}

else {

spin[i] = oldstate;
phil[i] = iphi[0];
phi2[i] = iphi[2];

Phi[i] = iphif[l];
}
}
else if (temperature == 0.0) {
spin[i] = oldstate;
phil[i] = iphi[0];
phi2[i] = iphi[2];
Phi[i] = iphil[l];
}
else if (random->uniform() > pOxexp((einitial-efinal)«*t_inverse)) {
spin[i] = oldstate;
phil[i] = iphi[0];
phi2[i] = iphi[2];
Phi[i] = iphil[l];
}
if (spin[i] != oldstate) naccept++;

Approved for public release; distribution is unlimited.

23



Appendix B. AppPottsRS Class Header File

Approved for public release; distribution is unlimited.

24



AppPottsRS class header

Developed by Efrain Hernandez-Rivera (2017--2018)
US Army Research Laboratory

THIS SOFTWARE IS MADE AVAILABLE ON AN "AS IS" BASIS
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, NEITHER
EXPRESSED OR IMPLIED

#ifdef APP_CLASS
AppStyle (potts/rs, AppPottsRS)

#else

#ifndef SPK_APP_POTTS_RS_H
#define SPK_APP_POTTS_RS_H

#include <map>

#include "app_potts.h"

namespace SPPARKS_NS {

class AppPottsRS : public AppPotts {
public:

AppPottsRS (class SPPARKS %, int, char «*x);
~AppPottsRS () ;

void init_app();
void grow_app();
void input_app (char %, int, char xx);

virtual void site_event_rejection(int, class RandomPark x);

Approved for public release; distribution is unlimited.

25



double site_energy (int);

protected:
double xphil, *phi2, *Phi; //pointer to 3 rotation angles

int xspin;

double thetam; //High-low angle divider

double Jij; //Interaction energy

int Osym; //Symmetry Operator flag

double xxsymquat; //Symmetry Operator in quaternion space

//Mobility = Mm [l - exp(-B % {theta/theham}”n)]
double nmob; //Mobility exponential power, n

double bmob; //Mobility exponential scaling, B

//Get misorientation angle from gquaternions

double quaternions (const double gi[4], const double gj[4]);

//Multiplication between quaternion vectors

void quat_mult (const double gi[4], const double gj[4], double gl4]);

//Define the symmetry operator based on symmetry flag

void symmat (double xxx);

//Convert symmetry operator into quaternion space
void mat2quat (const double O[3][3], double gl4]);
void euler2quat (int i, double g[4]);

//map to store misorientations

std: :map<std::pair<int,int>, double> misos;

i

#endif

Approved for public release; distribution is unlimited.

26



#endif

/+ ERROR/WARNING messages:

E: Illegal ... command

Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use —-echo screen as a
command-line option when running SPPARKS to see the offending

line.

E: One or more sites have invalid wvalues

The application only allows sites to be initialized with specific

values.

*/

Approved for public release; distribution is unlimited.

27



List of Symbols, Abbreviations, and Acronyms

MCS Monte Carlo step
PMC Potts Monte Carlo

SPPARKS  Stochastic Parallel PARticle Kinetic Simulator

Approved for public release; distribution is unlimited.

28



(PDF)

(PDF)

(PDF)

(PDF)

Approved for public release; distribution is unlimited.

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

DIR ARL
IMAL HAR
RECORDS MGMT
RDRL DCL
TECH LIB

GOVT PRINTG OFC
A MALHOTRA

DIR USARL
RDRL WMM B
E HERNANDEZ

29



